Pertidaksamaan Eksponen
Rumus-Rumus Penting Pertidaksamaan Eksponen
A. Untuk , jika:B. Untuk , jika:
Soal dan Pembahasan Pertidaksamaan Eksponen
1.Himpunan penyelesaian dari pertidaksamaan eksponen adalah ...
A. {x / -2 ≤ x ≤ 10/3}
B. {x / -10/3 ≤ x ≤ 2}
C. {x / x ≤ -10/3 atau x ≥ 2}
D. {x / x ≤ -2 atau x ≥ 10/3}
E. {x / -10/3 ≤ x ≤ -2}
Pembahasan :
Pembuat nol :
3x2 + 4x - 20 = 0
(3x + 10)(x - 2) = 0
x = -10/3 atau x = 2
Dengan uji garis bilangan diperoleh
x ≤ -10/3 atau x ≥ 2
jawaban:c
A. {x / -2 ≤ x ≤ 10/3}
B. {x / -10/3 ≤ x ≤ 2}
C. {x / x ≤ -10/3 atau x ≥ 2}
D. {x / x ≤ -2 atau x ≥ 10/3}
E. {x / -10/3 ≤ x ≤ -2}
Pembahasan :
Pembuat nol :
3x2 + 4x - 20 = 0
(3x + 10)(x - 2) = 0
x = -10/3 atau x = 2
Dengan uji garis bilangan diperoleh
x ≤ -10/3 atau x ≥ 2
jawaban:c
2.Nilai x yang memenuhi pertidaksamaan 52x - 6.5x+1 + 125 > 0, x ∈ R adalah ...
A. 1 < x < 2
B. 5 < x < 25
C. x < -1 atau x > 2
D. x < 1 atau x > 2
E. x < 5 atau x > 25
Pembahasan :
52x - 6.5x+1 + 125 > 0
(5x)2 - 6.5x.51 + 125 > 0
(5x)2 - 30(5x) + 125 > 0
Misalkan y = 5x, pertidaksamaan diatas menjadi
y2 - 30y + 125 > 0
Pembuat nol :
y2 - 30y + 125 = 0
(y - 5)(y - 25) = 0
y = 5 atau y = 25
Dengan uji garis bilangan diperoleh
y < 5 atau y > 25
Karena y = 5x, maka penyelesaiannya menjadi
5x < 5 atau 5x > 25
5x < 51 atau 5x > 52
x < 1 atau x > 2
Jawaban : D
A. 1 < x < 2
B. 5 < x < 25
C. x < -1 atau x > 2
D. x < 1 atau x > 2
E. x < 5 atau x > 25
Pembahasan :
52x - 6.5x+1 + 125 > 0
(5x)2 - 6.5x.51 + 125 > 0
(5x)2 - 30(5x) + 125 > 0
Misalkan y = 5x, pertidaksamaan diatas menjadi
y2 - 30y + 125 > 0
Pembuat nol :
y2 - 30y + 125 = 0
(y - 5)(y - 25) = 0
y = 5 atau y = 25
Dengan uji garis bilangan diperoleh
y < 5 atau y > 25
Karena y = 5x, maka penyelesaiannya menjadi
5x < 5 atau 5x > 25
5x < 51 atau 5x > 52
x < 1 atau x > 2
Jawaban : D
3.Himpunan penyelesaian dari 32x - 6.3x < 27 adalah ...
A. {x / x < -3, x ∈ R}
B. {x / x < -2, x ∈ R}
C. {x / x < 2, x ∈ R}
D. {x / x > 2, x ∈ R}
E. {x / x > 3, x ∈ R}
Pembahasan :
32x - 6.3x < 27
(3x)2 - 6(3x) - 27 < 0
Misalkan y = 3x, pertidaksamaan diatas menjadi
y2 - 6y - 27 < 0
Pembuat nol :
y2 - 6y - 27 = 0
(y + 3)(y - 9) = 0
y = -3 atau y = 9
Dengan uji garis bilangan diperoleh
-3 < y < 9
atau dapat pula ditulis
y > -3 dan y < 9
Karena y = 3x, maka
3x > -3 dan 3x < 9
3x > -3 dan 3x < 32
x ∈ R dan x < 2
Jadi, himpunan penyelesaiannya adalah
{x ∈ R dan x < 2} = {x < 2}
Jawaban : C
A. {x / x < -3, x ∈ R}
B. {x / x < -2, x ∈ R}
C. {x / x < 2, x ∈ R}
D. {x / x > 2, x ∈ R}
E. {x / x > 3, x ∈ R}
Pembahasan :
32x - 6.3x < 27
(3x)2 - 6(3x) - 27 < 0
Misalkan y = 3x, pertidaksamaan diatas menjadi
y2 - 6y - 27 < 0
Pembuat nol :
y2 - 6y - 27 = 0
(y + 3)(y - 9) = 0
y = -3 atau y = 9
Dengan uji garis bilangan diperoleh
-3 < y < 9
atau dapat pula ditulis
y > -3 dan y < 9
Karena y = 3x, maka
3x > -3 dan 3x < 9
3x > -3 dan 3x < 32
x ∈ R dan x < 2
Jadi, himpunan penyelesaiannya adalah
{x ∈ R dan x < 2} = {x < 2}
Jawaban : C
sekian pembahasan tentang pertidaksamaan eksponen,SEMOGA BERMAFAAT terima kasih...
daftar pustaka:
https://www.maretong.com/2019/08/soal-dan-pembahasan-sifat-persamaan-dan-pertidaksamaan-eksponen.html
https://smatika.blogspot.com/2018/02/pembahasan-soal-un-persamaan-dan.html
Jawaban : C
Komentar
Posting Komentar