- Dapatkan link
- X
- Aplikasi Lainnya
Contoh Soal 1
1. Diketahui log 3 = 0,332 dan log 2 = 0,225.maka log 18 dari soal tersebut adalah……..
a. 0,889
b. 0,556
c. 0,677
d. 0,876
Jawab:
Diket :
Log 3 = 0,332
Log 2 = 0,225
Ditanya: log 18 =…………….?
Jawaban:
Log 18 = log 9 . log 2
Log 18 = (log 3.log 3) . log 2
Log 18 = 2 . (0,332) + (0,225)
Log 18 = 0,664 + 0,225
Log 18 = 0,889
Jadi, log 18 pada soal diatas adalah 0,889. (A)
Contoh Soal 2
2. Ubahlah bentuk pangkat pada soal-soal berikut ini ke dalam bentuk logaritma:
- 24 = 16
- 58 = 675
- 27 = 48
- *Transformasikanlah bentuk pangkat tersebut dalam bentuk logaritma seperti berikut ini:
- 24 = 16 → 2log 16 = 4
- 58 = 675 → 5log 675 = 8
- 27 = 48 → 2log 48 = 7
Contoh Soal 3
3. Tentukanlah nilai dari logaritma berikut ini:
- Nilai pada logaritma (2log 8) + (3log 9) + (5log 125)
- Nilai pada logaritma (2log 1/8)+(3log 1/9) + (5log 1/125)
Pembahasannya :
a.(2log 8) + (3log 9) + (5log 125)
zb.(2log 1/8) + (3log 1/9) + (5log 1/125) = (2log 2 /−3) + (3log 3 /−2) + (5log 5 /−3) = (− 3 − 2 – 3) = − 8jJadi, nilai yang diperoleh dari soal diatas adalah 8 dan 8j.
Contoh Soal 4
4. Jika Diketahui 2log 8 = a dan 2log 4 = b. maka Tentukan nilai dari 6log 14
a. 1 /2
b. (1+2) / (2+1)
c. (a+1) / (b+2)
d. (1 +a) / (1+b)Pembahasannya:
Untuk 2 log 8 = a
= (log 8 / log 2) = a
= log 8 = a log 2Untuk 2 log 4 = b
= (log 4 / log 2) = b
= log 4 = b log 2Maka ,16 log 8 = (log 16) / (log68)
= (log 2.8) / (log 2.4)
= (log 2 + log 8) / (log 2 + log 4)
= (log 2 + a log a) / (log 2 + b log b)
= log2 (1+ a) / log 2( 1+ b)
= (1+a) / (1+ b)Jadi, nilai dari 6 log 14 pada contoh soal diatas adalah (1+a) / (1+b). (D)
Contoh Soal 5
5. Nilai dari (3log 5 – 3 log 15 + 3log 9)…… ?
a. 2
b. 1
c. 4
d. 5Pembahasannya :
(3log 5 – 3log 15 + 3log 9
= 3log ( 5 . 9) / 15
= 3log 45/15
= 3log 3
=1Jadi nilai dari 3log 5 – 3log 15 + 3log 9 adalah 1. (B)
Contoh soal 6
Diketahui 3log 5 = x dan 3log 7 = y. maka, nilai dari 3log 245 1/2 adalah … ? (EBTANAS ’98)
Pembahasan 1
3log 245 ½ = 3log (5 x 49) ½
3log 245 ½ = 3log ((5) ½ x (49) ½)
3log 245 ½ = 3log (5) ½ + 3log (72) ½
3log 245 ½ = ( 3log 5 + 3log 7)
3log 245 ½ = (x + y)
Jadi, nilai dari 3log 245 1/2 adalah (x + y).
Contoh Soal 7
Jika b = a4, nilai a dan b positif, maka nilai alog b – blog a adalah …? (UMPTN ’97)
Pembahasan 2
Diketahui bahwa b = a4, maka dapat disubstitusi kedalam perhitungan:
alog b – blog a = alog a4 –
alog b – blog a = 4 (alog a) – ( alog a)
alog b – blog a = 4 –
alog b – blog a =
Jadi, nilai dari alog b – blog a pada soal tersebut adalah .
Contoh Soal 8
Jika alog (1- 3log ) = 2, maka tentukanlah nilai a. (UMPTN ’97)
Pembahsan 3
Jika kita buat nilai 2 menjadi sebuah logaritma dengan bilangan pokok logaritmanya adalah a menjadi alog a2= 2, maka didapat :
alog (1- 3log ) = 2
alog (1- 3log ) = alog a2
Nilai numerus kedua logaritma tersebut bisa menjadi sebuah persamaan:
1- 3log = a2
3log 3 – 3log = a2
3log 3 – 3log 3(-3) = a2
3log = a2
3log 34 = a2
4 = a2
Sehingga diperoleh nilai a = 2
Contoh Soal 9
6. Hitunglah nilai pada soal logaritma berikut ini:
- (2log 4) + (2log 8)
- (2log 2√2) + (2log 4√2)
Pembahasannya:
1.(2log 4 + 2log 8) = (2log 4) x 8 = 2log 3 pangkat 2 = 5
2. (2log 2√2 + 2log 4√2) = (2log 2√2) x (4√2) = 2log 16 = 4
Jadi, nilai dari masing masing soal logaritma diatas adalah 5 dan 4.
Contoh Soal 10
7. Hitunglah nilai pada soal logaritma berikut ini:
- 2log 5 x 5log 64
- 2 log 25 x 5log 3 x 3log 32
Pembahasannya:
1. (2log 5) x (5log 64) = 2log 64 = 2log 26 = 6
2. (2log 25) x (5log 3) x (3log 32) =(2log 52) x (5log 3) x (3log 25)
= 2 . (2log 5) x (5log 3) x 5 . (3log 2)
= 2 x 5 x (2log 5) x (5log 3) x (3log 2)
= 10 x (2log 2) = 10 x 1 = 10Jadi,nilai dari soal diatas adalah 6 dan 10.
- Dapatkan link
- X
- Aplikasi Lainnya
Komentar
Posting Komentar